Skip to content

Composition module

This module provides a class for handling compositional embeddings.

Typical usage example

Fe2O3_magpie = CompositionalEmbedding("Fe2O3", "magpie")

CompositionalEmbedding

Class to handle compositional embeddings.


formula (str): A string formula e.g. CsPbI3, Li7La3Zr2O12
embedding (Union[str, Embedding]): Either a string name of the embedding
or an Embedding instance
x (int, optional): The non-stoichiometric amount.
Source code in src/elementembeddings/composition.py
class CompositionalEmbedding:
    """Class to handle compositional embeddings.

    Args:
    ----
        formula (str): A string formula e.g. CsPbI3, Li7La3Zr2O12
        embedding (Union[str, Embedding]): Either a string name of the embedding
        or an Embedding instance
        x (int, optional): The non-stoichiometric amount.
    """

    def __init__(self, formula: str, embedding: str | Embedding, x=1) -> None:
        """Initialise a CompositionalEmbedding instance."""
        self.embedding = embedding

        # If a string has been passed for embedding, create an Embedding instance
        if isinstance(embedding, str):
            self.embedding = Embedding.load_data(embedding)

        self.embedding_name: str = self.embedding.embedding_name
        # Set an attribute for the formula
        self.formula = formula

        # Set an attribute for the comp dict
        comp_dict = formula_parser(self.formula)
        self._natoms = 0
        for v in comp_dict.values():
            if v < 0:
                msg = "Formula cannot contain negative amounts of elements"
                raise ValueError(msg)
            self._natoms += abs(v)

        self.composition = comp_dict

        # Set an attribute for the element list
        self.element_list = list(self.composition.keys())
        # Set an attribute for the element matrix
        self.el_matrix = np.zeros(
            shape=(len(self.composition), len(self.embedding.embeddings["H"])),
        )
        for i, k in enumerate(self.composition.keys()):
            self.el_matrix[i] = self.embedding.embeddings[k]
        self.el_matrix = np.nan_to_num(self.el_matrix)

        # Set an attribute for the stoichiometric vector
        self.stoich_vector = np.array(list(self.composition.values()))

        # Set an attribute for the normalised stoichiometric vector
        self.norm_stoich_vector = self.stoich_vector / self._natoms

    @property
    def fractional_composition(self):
        """Fractional composition of the Composition."""
        return _get_fractional_composition(self.formula)

    @property
    def num_atoms(self) -> float:
        """Total number of atoms in Composition."""
        return self._natoms

    def as_dict(self) -> dict:
        # TO-DO: Need to create a dict representation for the embedding class
        """Return the CompositionalEmbedding class as a dict."""
        return {
            "formula": self.formula,
            "composition": self.composition,
            "fractional_composition": self.fractional_composition,
        }

    def _mean_feature_vector(self) -> np.ndarray:
        """Compute a weighted mean feature vector based of the embedding.

        The dimension of the feature vector is the same as the embedding.

        """
        return np.dot(self.norm_stoich_vector, self.el_matrix)

    def _variance_feature_vector(self) -> np.ndarray:
        """Compute a weighted variance feature vector."""
        diff_matrix = self.el_matrix - self._mean_feature_vector()

        diff_matrix = diff_matrix**2
        return np.dot(self.norm_stoich_vector, diff_matrix)

    def _minpool_feature_vector(self) -> np.ndarray:
        """Compute a min pooled feature vector."""
        return np.min(self.el_matrix, axis=0)

    def _maxpool_feature_vector(self) -> np.ndarray:
        """Compute a max pooled feature vector."""
        return np.max(self.el_matrix, axis=0)

    def _range_feature_vector(self) -> np.ndarray:
        """Compute a range feature vector."""
        return np.ptp(self.el_matrix, axis=0)

    def _sum_feature_vector(self) -> np.ndarray:
        """Compute the weighted sum feature vector."""
        return np.dot(self.stoich_vector, self.el_matrix)

    def _geometric_mean_feature_vector(self) -> np.ndarray:
        """Compute the geometric mean feature vector."""
        return np.exp(np.dot(self.norm_stoich_vector, np.log(self.el_matrix)))

    def _harmonic_mean_feature_vector(self) -> np.ndarray:
        """Compute the harmonic mean feature vector."""
        return np.reciprocal(
            np.dot(self.norm_stoich_vector, np.reciprocal(self.el_matrix)),
        )

    _stats_functions_dict: ClassVar = {
        "mean": "_mean_feature_vector",
        "variance": "_variance_feature_vector",
        "minpool": "_minpool_feature_vector",
        "maxpool": "_maxpool_feature_vector",
        "range": "_range_feature_vector",
        "sum": "_sum_feature_vector",
        "geometric_mean": "_geometric_mean_feature_vector",
        "harmonic_mean": "_harmonic_mean_feature_vector",
    }

    def feature_vector(self, stats: str | list = "mean"):
        """Compute a feature vector.

        The feature vector is a concatenation of
        the statistics specified in the stats argument.

        Args:
        ----
            stats (list): A list of strings specifying the statistics to be computed.
            The default is ['mean'].

        Returns:
        -------
            np.ndarray: A feature vector of dimension (len(stats) * embedding_dim).
        """
        implemented_stats = [
            "mean",
            "variance",
            "minpool",
            "maxpool",
            "range",
            "sum",
            "geometric_mean",
            "harmonic_mean",
        ]
        if isinstance(stats, str):
            stats = [stats]
        if not all(s in implemented_stats for s in stats):
            msg = f" {[stat for stat in stats if stat not in implemented_stats]} " f"are not valid statistics."
            raise ValueError(
                msg,
            )
        feature_vector = []
        for s in stats:
            feature_vector.append(getattr(self, self._stats_functions_dict[s])())
        return np.concatenate(feature_vector)

    def distance(
        self,
        comp_other,
        distance_metric: str = "euclidean",
        stats: str | list[str] = "mean",
    ):
        """Compute the distance between two compositions.

        Args:
        ----
            comp_other (Union[str, CompositionalEmbedding]): The other composition.
            distance_metric (str): The metric to be used. The default is 'euclidean'.
            stats (Union[str, list], optional): A list of statistics to be computed.

        Returns:
        -------
            float: The distance between the two CompositionalEmbedding objects.
        """
        if isinstance(comp_other, str):
            comp_other = CompositionalEmbedding(comp_other, self.embedding)
        if not isinstance(comp_other, CompositionalEmbedding):
            msg = "comp_other must be a string or a CompositionalEmbedding object."
            raise TypeError(
                msg,
            )
        if self.embedding_name != comp_other.embedding_name:
            msg = "The two CompositionalEmbedding objects must have the same embedding."
            raise TypeError(
                msg,
            )
        return _composition_distance(
            self,
            comp_other,
            self.embedding,
            distance_metric,
            stats,
        )

    def __repr__(self) -> str:
        return f"CompositionalEmbedding(formula={self.formula}, " f"embedding={self.embedding_name})"

    def __str__(self) -> str:
        return f"CompositionalEmbedding(formula={self.formula}, " f"embedding={self.embedding_name})"

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.formula == other.formula and self.embedding_name == other.embedding_name
        else:
            return False

    def __ne__(self, other):
        return not self.__eq__(other)

    def __hash__(self):
        return hash((self.formula, self.embedding))

fractional_composition property

Fractional composition of the Composition.

num_atoms: float property

Total number of atoms in Composition.

__init__(formula, embedding, x=1)

Initialise a CompositionalEmbedding instance.

Source code in src/elementembeddings/composition.py
def __init__(self, formula: str, embedding: str | Embedding, x=1) -> None:
    """Initialise a CompositionalEmbedding instance."""
    self.embedding = embedding

    # If a string has been passed for embedding, create an Embedding instance
    if isinstance(embedding, str):
        self.embedding = Embedding.load_data(embedding)

    self.embedding_name: str = self.embedding.embedding_name
    # Set an attribute for the formula
    self.formula = formula

    # Set an attribute for the comp dict
    comp_dict = formula_parser(self.formula)
    self._natoms = 0
    for v in comp_dict.values():
        if v < 0:
            msg = "Formula cannot contain negative amounts of elements"
            raise ValueError(msg)
        self._natoms += abs(v)

    self.composition = comp_dict

    # Set an attribute for the element list
    self.element_list = list(self.composition.keys())
    # Set an attribute for the element matrix
    self.el_matrix = np.zeros(
        shape=(len(self.composition), len(self.embedding.embeddings["H"])),
    )
    for i, k in enumerate(self.composition.keys()):
        self.el_matrix[i] = self.embedding.embeddings[k]
    self.el_matrix = np.nan_to_num(self.el_matrix)

    # Set an attribute for the stoichiometric vector
    self.stoich_vector = np.array(list(self.composition.values()))

    # Set an attribute for the normalised stoichiometric vector
    self.norm_stoich_vector = self.stoich_vector / self._natoms

as_dict()

Return the CompositionalEmbedding class as a dict.

Source code in src/elementembeddings/composition.py
def as_dict(self) -> dict:
    # TO-DO: Need to create a dict representation for the embedding class
    """Return the CompositionalEmbedding class as a dict."""
    return {
        "formula": self.formula,
        "composition": self.composition,
        "fractional_composition": self.fractional_composition,
    }

distance(comp_other, distance_metric='euclidean', stats='mean')

Compute the distance between two compositions.


comp_other (Union[str, CompositionalEmbedding]): The other composition.
distance_metric (str): The metric to be used. The default is 'euclidean'.
stats (Union[str, list], optional): A list of statistics to be computed.

float: The distance between the two CompositionalEmbedding objects.
Source code in src/elementembeddings/composition.py
def distance(
    self,
    comp_other,
    distance_metric: str = "euclidean",
    stats: str | list[str] = "mean",
):
    """Compute the distance between two compositions.

    Args:
    ----
        comp_other (Union[str, CompositionalEmbedding]): The other composition.
        distance_metric (str): The metric to be used. The default is 'euclidean'.
        stats (Union[str, list], optional): A list of statistics to be computed.

    Returns:
    -------
        float: The distance between the two CompositionalEmbedding objects.
    """
    if isinstance(comp_other, str):
        comp_other = CompositionalEmbedding(comp_other, self.embedding)
    if not isinstance(comp_other, CompositionalEmbedding):
        msg = "comp_other must be a string or a CompositionalEmbedding object."
        raise TypeError(
            msg,
        )
    if self.embedding_name != comp_other.embedding_name:
        msg = "The two CompositionalEmbedding objects must have the same embedding."
        raise TypeError(
            msg,
        )
    return _composition_distance(
        self,
        comp_other,
        self.embedding,
        distance_metric,
        stats,
    )

feature_vector(stats='mean')

Compute a feature vector.

The feature vector is a concatenation of the statistics specified in the stats argument.


stats (list): A list of strings specifying the statistics to be computed.
The default is ['mean'].

np.ndarray: A feature vector of dimension (len(stats) * embedding_dim).
Source code in src/elementembeddings/composition.py
def feature_vector(self, stats: str | list = "mean"):
    """Compute a feature vector.

    The feature vector is a concatenation of
    the statistics specified in the stats argument.

    Args:
    ----
        stats (list): A list of strings specifying the statistics to be computed.
        The default is ['mean'].

    Returns:
    -------
        np.ndarray: A feature vector of dimension (len(stats) * embedding_dim).
    """
    implemented_stats = [
        "mean",
        "variance",
        "minpool",
        "maxpool",
        "range",
        "sum",
        "geometric_mean",
        "harmonic_mean",
    ]
    if isinstance(stats, str):
        stats = [stats]
    if not all(s in implemented_stats for s in stats):
        msg = f" {[stat for stat in stats if stat not in implemented_stats]} " f"are not valid statistics."
        raise ValueError(
            msg,
        )
    feature_vector = []
    for s in stats:
        feature_vector.append(getattr(self, self._stats_functions_dict[s])())
    return np.concatenate(feature_vector)

SpeciesCompositionalEmbedding

Class to handle species compositional embeddings.


formula_dict (dict): A dictionary of the form {species: amount}
embedding (Union[str, SpeciesEmbedding]): Either a string name of the embedding
or an SpeciesEmbedding instance
x (int, optional): The non-stoichiometric amount.
Source code in src/elementembeddings/composition.py
class SpeciesCompositionalEmbedding:
    """Class to handle species compositional embeddings.

    Args:
    ----
        formula_dict (dict): A dictionary of the form {species: amount}
        embedding (Union[str, SpeciesEmbedding]): Either a string name of the embedding
        or an SpeciesEmbedding instance
        x (int, optional): The non-stoichiometric amount.
    """

    def __init__(self, formula_dict: dict, embedding: str | SpeciesEmbedding, x=1) -> None:
        """Initialise a SpeciesCompositionalEmbedding instance."""
        self.embedding = embedding

        # If a string has been passed for embedding, create an Embedding instance
        if isinstance(embedding, str):
            self.embedding = SpeciesEmbedding.load_data(embedding)

        self.embedding_name: str = self.embedding.embedding_name

        # Set an attribute for the comp dict
        self.composition = formula_dict

        # Set an attribute for the number of atoms
        self._natoms = 0
        for v in self.composition.values():
            if v < 0:
                msg = "Formula cannot contain negative amounts of elements"
                raise ValueError(msg)
            self._natoms += abs(v)

        # Set an attribute for the species list
        self.species_list = list(self.composition.keys())

        # Set an attribute for the element list
        self.element_list = list({parse_species(sp)[0] for sp in self.species_list})
        # Set an attribute for the species matrix
        self.species_matrix = np.zeros(
            shape=(len(self.composition), len(self.embedding.embeddings["Zn2+"])),
        )
        for i, k in enumerate(self.composition.keys()):
            self.species_matrix[i] = self.embedding.embeddings[k]
        self.species_matrix = np.nan_to_num(self.species_matrix)

        # Set an attribute for the stoichiometric vector
        self.stoich_vector = np.array(list(self.composition.values()))

        # Set an attribute for the normalised stoichiometric vector
        self.norm_stoich_vector = self.stoich_vector / np.sum(self.stoich_vector)

    @property
    def num_atoms(self) -> float:
        """Total number of atoms in Composition."""
        return self._natoms

    def get_el_amt_dict(self) -> dict:
        """
        Return the composition as dictionary of element symbol : stoichiometry.

        e.g. {"Fe2+":1, "Fe3+":2, "O2-": 4} -> {"Fe":3, "O":4}.
        """
        dct: dict[str, float] = collections.defaultdict(float)
        for sp, stoich in self.composition.items():
            el = parse_species(sp)[0]
            dct[el] += stoich
        return dct

    @property
    def formula_pretty(self) -> str:
        """Return the pretty formula of the composition."""
        els_amt_dict = self.get_el_amt_dict()
        els = sorted(els_amt_dict, key=lambda el: X[el])
        formula = [f"{el}{self._stoich_formatter(els_amt_dict[el])}" for el in els]
        return "".join(formula)

    def _stoich_formatter(self, stoich: float, tol: float = 1e-8) -> str:
        """Return the stoichiometry as a string."""
        if stoich == 1:
            return ""
        if abs(stoich - int(stoich)) < tol:
            return str(int(stoich))
        return str(round(stoich, 8))

    def as_dict(self) -> dict:
        # TO-DO: Need to create a dict representation for the embedding class
        """Return the SpeciesCompositionalEmbedding class as a dict."""
        return {
            "composition": self.composition,
        }

    @property
    def fractional_composition(self):
        """Fractional composition of the Composition."""
        return {k: v / self._natoms for k, v in self.composition.items()}

    def _mean_feature_vector(self) -> np.ndarray:
        """Compute a weighted mean feature vector based of the embedding.

        The dimension of the feature vector is the same as the embedding.

        """
        return np.dot(self.norm_stoich_vector, self.species_matrix)

    def _variance_feature_vector(self) -> np.ndarray:
        """Compute a weighted variance feature vector."""
        diff_matrix = self.species_matrix - self._mean_feature_vector()

        diff_matrix = diff_matrix**2
        return np.dot(self.norm_stoich_vector, diff_matrix)

    def _minpool_feature_vector(self) -> np.ndarray:
        return np.min(self.species_matrix, axis=0)

    def _maxpool_feature_vector(self) -> np.ndarray:
        return np.max(self.species_matrix, axis=0)

    def _range_feature_vector(self) -> np.ndarray:
        return np.ptp(self.species_matrix, axis=0)

    def _sum_feature_vector(self) -> np.ndarray:
        return np.dot(self.stoich_vector, self.species_matrix)

    def _geometric_mean_feature_vector(self) -> np.ndarray:
        return np.exp(np.dot(self.norm_stoich_vector, np.log(self.species_matrix)))

    def _harmonic_mean_feature_vector(self) -> np.ndarray:
        return np.reciprocal(
            np.dot(self.norm_stoich_vector, np.reciprocal(self.species_matrix)),
        )

    _stats_functions_dict: ClassVar = {
        "mean": "_mean_feature_vector",
        "variance": "_variance_feature_vector",
        "minpool": "_minpool_feature_vector",
        "maxpool": "_maxpool_feature_vector",
        "range": "_range_feature_vector",
        "sum": "_sum_feature_vector",
        "geometric_mean": "_geometric_mean_feature_vector",
        "harmonic_mean": "_harmonic_mean_feature_vector",
    }

    def feature_vector(self, stats: str | list = "mean"):
        """Compute a feature vector.

        The feature vector is a concatenation of
        the statistics specified in the stats argument.

        Args:
        ----
            stats (list): A list of strings specifying the statistics to be computed.
            The default is ['mean'].

        Returns:
        -------
            np.ndarray: A feature vector of dimension (len(stats) * embedding_dim).
        """
        implemented_stats = [
            "mean",
            "variance",
            "minpool",
            "maxpool",
            "range",
            "sum",
            "geometric_mean",
            "harmonic_mean",
        ]
        if isinstance(stats, str):
            stats = [stats]
        if not all(s in implemented_stats for s in stats):
            msg = f" {[stat for stat in stats if stat not in implemented_stats]} " f"are not valid statistics."
            raise ValueError(
                msg,
            )
        feature_vector = []
        for s in stats:
            feature_vector.append(getattr(self, self._stats_functions_dict[s])())
        return np.concatenate(feature_vector)

    def distance(
        self,
        comp_other,
        distance_metric: str = "euclidean",
        stats: str | list[str] = "mean",
    ):
        """Compute the distance between two compositions.

        Args:
        ----
            comp_other (Union[dict, SpeciesCompositionalEmbedding]):
                The other composition.
            distance_metric (str): The metric to be used. The default is 'euclidean'.
            stats (Union[str, list], optional): A list of statistics to be computed.

        Returns:
        -------
            float: The distance between the two SpeciesCompositionalEmbedding objects.
        """
        if isinstance(comp_other, dict):
            comp_other = SpeciesCompositionalEmbedding(comp_other, self.embedding)
        if not isinstance(comp_other, SpeciesCompositionalEmbedding):
            msg = "comp_other must be a dict or a SpeciesCompositionalEmbedding object."
            raise TypeError(
                msg,
            )
        if self.embedding_name != comp_other.embedding_name:
            msg = """The two SpeciesCompositionalEmbedding
                 objects must have the same embedding."""
            raise ValueError(
                msg,
            )
        return _species_composition_distance(
            self,
            comp_other,
            self.embedding,
            distance_metric,
            stats,
        )

    def __repr__(self) -> str:
        return f"SpeciesCompositionalEmbedding(formula={self.formula_pretty}, " f"embedding={self.embedding_name})"

    def __str__(self) -> str:
        return f"SpeciesCompositionalEmbedding(formula={self.formula_pretty}, " f"embedding={self.embedding_name})"

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return (
                self.formula_pretty == other.formula_pretty
                and self.embedding_name == other.embedding_name
                and self.composition == other.composition
            )
        else:
            return False

    def __ne__(self, other):
        return not self.__eq__(other)

    def __hash__(self):
        return hash((self.formula_pretty, self.embedding))

formula_pretty: str property

Return the pretty formula of the composition.

fractional_composition property

Fractional composition of the Composition.

num_atoms: float property

Total number of atoms in Composition.

__init__(formula_dict, embedding, x=1)

Initialise a SpeciesCompositionalEmbedding instance.

Source code in src/elementembeddings/composition.py
def __init__(self, formula_dict: dict, embedding: str | SpeciesEmbedding, x=1) -> None:
    """Initialise a SpeciesCompositionalEmbedding instance."""
    self.embedding = embedding

    # If a string has been passed for embedding, create an Embedding instance
    if isinstance(embedding, str):
        self.embedding = SpeciesEmbedding.load_data(embedding)

    self.embedding_name: str = self.embedding.embedding_name

    # Set an attribute for the comp dict
    self.composition = formula_dict

    # Set an attribute for the number of atoms
    self._natoms = 0
    for v in self.composition.values():
        if v < 0:
            msg = "Formula cannot contain negative amounts of elements"
            raise ValueError(msg)
        self._natoms += abs(v)

    # Set an attribute for the species list
    self.species_list = list(self.composition.keys())

    # Set an attribute for the element list
    self.element_list = list({parse_species(sp)[0] for sp in self.species_list})
    # Set an attribute for the species matrix
    self.species_matrix = np.zeros(
        shape=(len(self.composition), len(self.embedding.embeddings["Zn2+"])),
    )
    for i, k in enumerate(self.composition.keys()):
        self.species_matrix[i] = self.embedding.embeddings[k]
    self.species_matrix = np.nan_to_num(self.species_matrix)

    # Set an attribute for the stoichiometric vector
    self.stoich_vector = np.array(list(self.composition.values()))

    # Set an attribute for the normalised stoichiometric vector
    self.norm_stoich_vector = self.stoich_vector / np.sum(self.stoich_vector)

as_dict()

Return the SpeciesCompositionalEmbedding class as a dict.

Source code in src/elementembeddings/composition.py
def as_dict(self) -> dict:
    # TO-DO: Need to create a dict representation for the embedding class
    """Return the SpeciesCompositionalEmbedding class as a dict."""
    return {
        "composition": self.composition,
    }

distance(comp_other, distance_metric='euclidean', stats='mean')

Compute the distance between two compositions.


comp_other (Union[dict, SpeciesCompositionalEmbedding]):
    The other composition.
distance_metric (str): The metric to be used. The default is 'euclidean'.
stats (Union[str, list], optional): A list of statistics to be computed.

float: The distance between the two SpeciesCompositionalEmbedding objects.
Source code in src/elementembeddings/composition.py
def distance(
    self,
    comp_other,
    distance_metric: str = "euclidean",
    stats: str | list[str] = "mean",
):
    """Compute the distance between two compositions.

    Args:
    ----
        comp_other (Union[dict, SpeciesCompositionalEmbedding]):
            The other composition.
        distance_metric (str): The metric to be used. The default is 'euclidean'.
        stats (Union[str, list], optional): A list of statistics to be computed.

    Returns:
    -------
        float: The distance between the two SpeciesCompositionalEmbedding objects.
    """
    if isinstance(comp_other, dict):
        comp_other = SpeciesCompositionalEmbedding(comp_other, self.embedding)
    if not isinstance(comp_other, SpeciesCompositionalEmbedding):
        msg = "comp_other must be a dict or a SpeciesCompositionalEmbedding object."
        raise TypeError(
            msg,
        )
    if self.embedding_name != comp_other.embedding_name:
        msg = """The two SpeciesCompositionalEmbedding
             objects must have the same embedding."""
        raise ValueError(
            msg,
        )
    return _species_composition_distance(
        self,
        comp_other,
        self.embedding,
        distance_metric,
        stats,
    )

feature_vector(stats='mean')

Compute a feature vector.

The feature vector is a concatenation of the statistics specified in the stats argument.


stats (list): A list of strings specifying the statistics to be computed.
The default is ['mean'].

np.ndarray: A feature vector of dimension (len(stats) * embedding_dim).
Source code in src/elementembeddings/composition.py
def feature_vector(self, stats: str | list = "mean"):
    """Compute a feature vector.

    The feature vector is a concatenation of
    the statistics specified in the stats argument.

    Args:
    ----
        stats (list): A list of strings specifying the statistics to be computed.
        The default is ['mean'].

    Returns:
    -------
        np.ndarray: A feature vector of dimension (len(stats) * embedding_dim).
    """
    implemented_stats = [
        "mean",
        "variance",
        "minpool",
        "maxpool",
        "range",
        "sum",
        "geometric_mean",
        "harmonic_mean",
    ]
    if isinstance(stats, str):
        stats = [stats]
    if not all(s in implemented_stats for s in stats):
        msg = f" {[stat for stat in stats if stat not in implemented_stats]} " f"are not valid statistics."
        raise ValueError(
            msg,
        )
    feature_vector = []
    for s in stats:
        feature_vector.append(getattr(self, self._stats_functions_dict[s])())
    return np.concatenate(feature_vector)

get_el_amt_dict()

Return the composition as dictionary of element symbol : stoichiometry.

e.g. {"Fe2+":1, "Fe3+":2, "O2-": 4} -> {"Fe":3, "O":4}.

Source code in src/elementembeddings/composition.py
def get_el_amt_dict(self) -> dict:
    """
    Return the composition as dictionary of element symbol : stoichiometry.

    e.g. {"Fe2+":1, "Fe3+":2, "O2-": 4} -> {"Fe":3, "O":4}.
    """
    dct: dict[str, float] = collections.defaultdict(float)
    for sp, stoich in self.composition.items():
        el = parse_species(sp)[0]
        dct[el] += stoich
    return dct

composition_featuriser(data, formula_column='formula', embedding='magpie', stats='mean', inplace=False)

Compute a feature vector for a composition.

The feature vector is based on the statistics specified in the stats argument.


data (Union[pd.DataFrame, pd.Series, list, CompositionalEmbedding]):
    A pandas DataFrame or Series containing a column named 'formula',
    a list of formula, or a CompositionalEmbedding class
formula_column (str, optional): The column name containing the formula.
embedding (Union[Embedding, str], optional): A Embedding class or a string
stats (Union[str, list], optional): A list of statistics to be computed.
    The default is ['mean'].
inplace (bool, optional): Whether to perform the operation in place on the data.
    The default is False.

Union[pd.DataFrame,list]: A pandas DataFrame containing the feature vector,
or a list of feature vectors is returned
Source code in src/elementembeddings/composition.py
def composition_featuriser(
    data: pd.DataFrame | pd.Series | CompositionalEmbedding | list,
    formula_column: str = "formula",
    embedding: Embedding | str = "magpie",
    stats: str | list = "mean",
    inplace: bool = False,
) -> pd.DataFrame:
    """Compute a feature vector for a composition.

    The feature vector is based on the statistics specified
    in the stats argument.

    Args:
    ----
        data (Union[pd.DataFrame, pd.Series, list, CompositionalEmbedding]):
            A pandas DataFrame or Series containing a column named 'formula',
            a list of formula, or a CompositionalEmbedding class
        formula_column (str, optional): The column name containing the formula.
        embedding (Union[Embedding, str], optional): A Embedding class or a string
        stats (Union[str, list], optional): A list of statistics to be computed.
            The default is ['mean'].
        inplace (bool, optional): Whether to perform the operation in place on the data.
            The default is False.

    Returns:
    -------
        Union[pd.DataFrame,list]: A pandas DataFrame containing the feature vector,
        or a list of feature vectors is returned
    """
    if isinstance(stats, str):
        stats = [stats]
    if isinstance(data, pd.Series):
        data = data.to_frame(name="formula")
    if isinstance(data, pd.DataFrame):
        if not inplace:
            data = data.copy()
        if formula_column not in data.columns:
            msg = f"The data must contain a column named {formula_column}  to featurise."
            raise ValueError(
                msg,
            )
        print("Featurising compositions...")
        comps = [CompositionalEmbedding(x, embedding) for x in tqdm(data[formula_column].tolist())]
        print("Computing feature vectors...")
        fvs = [x.feature_vector(stats) for x in tqdm(comps)]
        feature_names = comps[0].embedding.feature_labels
        feature_names = [f"{stat}_{feature}" for stat in stats for feature in feature_names]
        return pd.concat([data, pd.DataFrame(fvs, columns=feature_names)], axis=1)
    elif isinstance(data, list):
        comps = [CompositionalEmbedding(x, embedding) for x in data]
        return [x.feature_vector(stats) for x in tqdm(comps)]

    elif isinstance(data, CompositionalEmbedding):
        return data.feature_vector(stats)
    else:
        msg = "The data must be a pandas DataFrame, Series," " list or CompositionalEmbedding class."
        raise TypeError(
            msg,
        )

formula_parser(formula)

Parse a string formula.

Returns a dictionary of the composition with key:value pairs of element symbol:amount.


formula (str): A string formula e.g. CsPbI3, Li7La3Zr2O12

(dict): A dictionary of the composition
Source code in src/elementembeddings/composition.py
def formula_parser(formula: str) -> dict[str, float]:
    # TO-DO: Add validation to check composition contains real elements.
    """Parse a string formula.

    Returns a dictionary of the composition with key:value pairs
    of element symbol:amount.

    Args:
    ----
        formula (str): A string formula e.g. CsPbI3, Li7La3Zr2O12

    Returns:
    -------
        (dict): A dictionary of the composition

    """
    # For Metallofullerene
    formula = formula.replace("@", "")

    regex = r"\(([^\(\)]+)\)\s*([\.e\d]*)"
    r = re.compile(regex)
    m = re.search(r, formula)
    if m:
        factor = 1.0
        if m.group(2) != "":
            factor = float(m.group(2))
        unit_sym_dict = _get_sym_dict(m.group(1), factor)
        expanded_sym = "".join([f"{el}{amt}" for el, amt in unit_sym_dict.items()])
        expanded_formula = formula.replace(m.group(), expanded_sym)
        return formula_parser(expanded_formula)
    return _get_sym_dict(formula, 1)

species_composition_featuriser(data, embedding='skipspecies', stats='mean', to_dataframe=False)

Compute a feature vector for a composition.

The feature vector is based on the statistics specified in the stats argument.


data (Union[list, SpeciesCompositionalEmbedding]):
    a list of composition dictionaries, or a SpeciesCompositionalEmbedding class
embedding (Union[SpeciesEmbedding, str], optional): A SpeciesEmbedding class
    or a string
stats (Union[str, list], optional): A list of statistics to be computed.
    The default is ['mean'].
to_dataframe (bool, optional): Whether to return the feature vectors
    as a DataFrame. The default is False.

Union[pd.DataFrame,list]: A pandas DataFrame containing the feature vector,
or a list of feature vectors is returned
Source code in src/elementembeddings/composition.py
def species_composition_featuriser(
    data: SpeciesCompositionalEmbedding | list,
    embedding: Embedding | str = "skipspecies",
    stats: str | list = "mean",
    to_dataframe: bool = False,
) -> list | pd.DataFrame:
    """Compute a feature vector for a composition.

    The feature vector is based on the statistics specified
    in the stats argument.

    Args:
    ----
        data (Union[list, SpeciesCompositionalEmbedding]):
            a list of composition dictionaries, or a SpeciesCompositionalEmbedding class
        embedding (Union[SpeciesEmbedding, str], optional): A SpeciesEmbedding class
            or a string
        stats (Union[str, list], optional): A list of statistics to be computed.
            The default is ['mean'].
        to_dataframe (bool, optional): Whether to return the feature vectors
            as a DataFrame. The default is False.

    Returns:
    -------
        Union[pd.DataFrame,list]: A pandas DataFrame containing the feature vector,
        or a list of feature vectors is returned
    """
    if isinstance(stats, str):
        stats = [stats]
    if isinstance(data, list):
        comps = [SpeciesCompositionalEmbedding(x, embedding) for x in data]
        comp_vectors = [x.feature_vector(stats) for x in tqdm(comps, desc="Computing feature vectors")]
    elif isinstance(data, SpeciesCompositionalEmbedding):
        comps = [data]
        comp_vectors = data.feature_vector(stats)
    else:
        msg = "The data must be a list or SpeciesCompositionalEmbedding class."
        raise TypeError(
            msg,
        )
    if to_dataframe:
        feature_names = comps[0].embedding.feature_labels
        feature_names = [f"{stat}_{feature}" for stat in stats for feature in feature_names]
        formulae = [x.formula_pretty for x in comps]
        # Create a DataFrame with formula, composition and feature vectors
        df = pd.DataFrame(comp_vectors, columns=feature_names)
        df["formula"] = formulae
        df["composition"] = data
        # Reorder the columns
        return df[["formula", "composition", *feature_names]]

    return comp_vectors